Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Synthesis, structure and properties of the macrocyclic ferrocenophanes with cyclopentadienyl ligands tethered by oligo(ethylene glycol) chain

Yuji Suzaki, Atsuko Takagi, Kohtaro Osakada*

Chemical Resources Laboratory (Mail Box R1-3), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

A R T I C L E I N F O

Article history: Received 12 June 2010 Received in revised form 24 July 2010 Accepted 29 July 2010 Available online 6 August 2010

Keywords: Ferrocene Ferrocenophane Crown ether Electrochemistry

ABSTRACT

Cyclization reactions of Fe{C₅H₄OCH₂(CH₂OCH₂)_nCH₂OTs}₂ (n = 1, 2) with C₆H₄-1,2-(OH)₂, C₆H₄-1,3-(OH)₂, and Fe(C₅H₄OAc)₂ under basic conditions yield the corresponding macrocyclic 1,1'-ferrocenophanes. The ferrocenophane having a pyrido-crown ether structure was also synthesized. These ferrocenophanes were characterized by X-ray crystallography and NMR spectroscopy. Cyclic voltammograms of the ferrocenophanes exhibited reversible redox peaks assigned to the oxidation and reduction of the ferrocene unit. The macrocyclic pyrido-containing ferrocenophane forms pseudorotaxane with [NH₂{(CH₂)₉Me}₂]BARF (BARF = B{C₆H₃-3,5-(CF₃)₂}) in CDCl₃.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Ferrocenophanes, ferrocene derivatives whose cyclopentadienyl ligands were connected by bridging unit, have received attention due to their unique propertied such as the intramolecular electronic communication, the ligandation to the transition metals and their ring-opening polymerization [1–5]. Macrocyclic ferrocenophanes having oligo(ethylene glycol) units as the tether of the cyclopentadienyl ligands were regarded as analogues to the crown ethers and have been reported to include metal cations as the host molecule [6]. The affinity to the metal cations varies depending on the length of the oligo(ethylene glycol) tether, oxidation state of the Fe atom, and the presence of a heteroatom within the ring [6–8].

Recently we have reported a macrocyclic octaoxa[22]ferrocenophane and its rotaxane with dialkyl ammonium [9]. The rotaxane undergoes disaggregation reaction in CD₃CN ($k_{obs} = 3.9$ (7) × 10⁻⁶ s⁻¹ at 45 °C) (Eq (1)), although the rotaxane having DB24C8 (dibenzo[24]crown-8) as a macrocyclic component is stable in solution under the same conditions. It is probably assigned to the larger size of the cavity of the octaoxa[22]ferrocenophane than that of DB24C8. The macrocyclic structures of these 1,1'-ferrocenylene-containing crown ethers were considered

* Corresponding author. Tel./fax: +81 45 924 5224. E-mail address: kosakada@res.titech.ac.jp (K. Osakada).

to influence the formation of the host—guest complexes with the cationic ions or molecules. Akabori reported detailed structure of the complex of a pentaoxa[13]ferrocenophane and NaSCN [6e]. In this paper we report preparation of macrocyclic 1,1'-ferrocenophanes as well as their structures in the solid state, electro-chemical properties, and pseudorotaxane formation in solution.

⁰⁰²²⁻³²⁸X/\$ – see front matter @ 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jorganchem.2010.07.028

2. Results and discussion

Macrocyclic 1,1'-ferrocenophanes, 1–3 and 5, were newly prepared, although 4 was already reported elsewhere [9]. Fe $\{C_5H_4OCH_2(CH_2OCH_2)_nCH_2OTS\}_2$ (n = 1, 2; Ts = SO₂C₆H₄-4-Me) is synthesized by reaction of TsCl and Fe{C₅H₄OCH₂(CH₂OCH₂)_{n-} CH_2OH_2 (n = 1, 2) and used for the cyclization shown in Eq (2). Reaction of Fe(C₅H₄OCH₂CH₂OCH₂CH₂OTs)₂ and C₆H₄-1,2-(OH)₂ with K₂CO₃ in DMF for 7 days yields 1 having a hexaoxa[16]ferrocenophane structure (Table 1). FABMS (Fast atom bombardment mass spectrum) of **1** shows a peak at m/z = 468 corresponding to the structure. ¹³C{¹H} NMR of **1** contains signals of C₅H₄ units (δ 56.1, 61.8, 126.7). Similar cyclization reactions yield ferrocenecontaining crown ether 2-5 in 8-88% (Eq (2), Table 1). The reactions of Fe(C₅H₄OCH₂CH₂OCH₂CH₂OTs)₂ with C₆H₄-1,2-(OH)₂ and C_6H_4 -1,3-(OH)₂ in the presence of K_2CO_3 yield 1 and 2 in higher yield (1:58%, 2:20%) than those with Cs₂CO₃ (1:43%, 2:13%). The difference in the yields was attributed to the template effect of the macrocycle to inclusion of metal cations, K⁺ or Cs⁺, which facilitates the cyclization.[10] Ferrocenophanes 3 and 5 were synthesized from the reaction of Fe{C₅H₄OCH₂(CH₂OCH₂)_nCH₂OTs}₂ (n = 1, 2) with $[Fe(C_5H_4O)_2]^{2-}$, generated in situ from $Fe(C_5H_4OAc)_2$, Cs_2CO_3 and KOH in water. ¹³C{¹H} NMR spectrum of **3** contains three signals for C_5H_4 (δ 56.2, 62.1, 127.0) and two signals for OCH₂ $(\delta$ 70.1 (overlapping)) due to the symmetric structure composed of two 1,1'-ferrocenylenes and two di(ethylene glycol) units. ¹H NMR spectrum of **3** in CDCl₃ shows the two signals of the C₅H₄ hydrogens $(\delta 3.86 - 3.89, 4.11)$ as well as the two signals of OCH₂ ($\delta 3.86 - 3.89$, 4.06) as shown in Fig. 1(A). Addition of NaBARF (BARF = $B\{C_6H_3 3,5-(CF_3)_2\}_4$) to a CDCl₃ solution of **3** ([**3**] = [NaBARF] = 10 mM) causes shift of the signals of OCH₂ (δ 3.86–3.89, 4.06) to lower

Table 1
Conditions and yields of macrocyclic ferrocenophanes, 1–6.

Compound	n	R	Base	Time	Isolated Yields
1	1	C ₆ H ₄ -1,2-	K ₂ CO ₃	7 days	58%
			Cs ₂ CO ₃	4 days	43%
2	1	C ₆ H ₄ -1,3-	K ₂ CO ₃	3 days	20%
			Cs ₂ CO ₃	3 days	13%
3	1	$Fe(C_5H_4)_2$	Cs ₂ CO ₃ /KOH	7 h	8%
4 ^a	2	C ₆ H ₄ -1,2-	Cs ₂ CO ₃	3 days	88%
5	2	$Fe(C_5H_4)_2$	Cs ₂ CO ₃ /KOH	19 h	33%
6 ^b	-	-	NaH	2 days	18%

^a Ref. [9].

 $^{\rm b}$ See Eq. (3) and experimental section for the structure of the compounds and reaction conditions.

Fig. 1. ¹H NMR spectra (300 MHz, CDCl₃, r.t.) of (A) **3** ([**3**] = 10 mM) and (B) **3** and NaBARF ([**3**] = [NaBARF] = 10 mM). Peaks with asterisk indicate CHCl₃.

magnetic field position (δ 4.01, 4.33) and of C₅H₄ (δ 3.86–3.89, 4.11) to the higher magnetic field positions (δ 3.71, 3.92). FABMS of the mixture shows a peak at m/z = 599 corresponding to $[\mathbf{3} + Na]^+$. These results indicate that $\mathbf{3}$ and Na⁺ form the 1:1 inclusion complex in CDCl₃ solution [6,10].

Reaction of Fe(C₅H₄OCH₂CH₂OCH₂CH₂OH)₂ with C₅H₃N-2,6-(CH₂OTs)₂ in the presence of NaH ([Fe(C₅H₄OCH₂CH₂OCH₂CH₂OCH)₂] = [C₅H₃N-2,6-(CH₂OTs)₂] = 5 mM) forms the cyclization product **6** in 18% isolated yield (Eq (3)). ¹³C{¹H} NMR spectrum of **6** shows signals for the cyclopentadienyl carbons at δ 56.0, 62.9 and 128.8. FABMS of **6** shows a peak at m/z = 497 corresponding to the calculated molecular weight.

Recrystallization of 1, 2 and 3 gave the single crystals suitable for X-ray structure analysis. Complexes of **5** with KBPh₄ and of **6** with NaBARF were also characterized by X-ray crystallography. The obtained molecular structures were shown in Fig. 2. $C(C_5H_4)-O$ bonds of 1 (C5-O1 and C20-O6) adopt almost eclipsed conformation to the axis of the ferrocene unit (Chart 1(A), Table 2). The dihedral angle of the bonds, C5-O1 and C20-O6, is 16°. The conformations of C5–O1–C6 and C20–O6–C19 units avoid the electrostatic repulsion of the lone pairs of O1 and O6. Cyclopentadienyl ligands of **1** are deviated by $6.1(1)^{\circ}$ from the ideal parallel conformation (Chart 1(B)) which is partly ascribed to the repulsion of O1 and O6. H8 atom of 1 has a contact with O3 (2.536 Å) which is shorter than the sum of the van der Waals radii for oxygen and hydrogen (2.72 Å), indicating the intramolecular hydrogen bond. Dihedral angles of C_5H_4 and C_6H_4 are almost vertical (86.33(9)° and 88.06(9)°). Distance between Fe1 and the centroid of C_6H_4 is 10.053 (1) Å. The circumferential bond lengths, the sum of the bond lengths of the macrocycle unit containing Fe1-C5-O1- through

Fig. 2. Molecular structure of (A) **1**, (B) **2**, (C) **3**, (D) $[K(5)]BPh_4$, and (E) [Na(6)]BARF. ORTEP drawings are shown in 50% probability except [Na(6)]BARF (30%). Hydrogen atoms and counter anions were omitted for simplicity.

-O6-C20-Fe1, is 28.42(5) Å which is longer than that of DB18C6 (dibenzo[18]crown-6, 25.8(2) Å) by 2.6 Å (Table 2)[11].

The compounds **2**, **3**, [K(**5**)]BPh₄ and [Na(**6**)]BARF were analyzed similarly. Intramolecular hydrogen bonds were observed in **2**, C1–H1···O4 (distance: 2.694 Å; angle: 144°) and C15–H16···O1 (distance: 2.600 Å; angle: 156°), and in **3**, C4-H4···O5 (distance: 2.725 Å; angle: 154°) and C18-H20···O2 (distance: 2.684 Å; angle: 153°) (Fig. 2(B) and (C)). Fig. 2(D) shows the molecular structure of

Chart 1. Conformation of cyclopentadienyl ligands of **1** obtained from X-ray crystal analysis.

the cationic part of [K(5)]BPh₄. K1 atom was incorporated in the cavity of the two tri(ethylene glycol) units with helixed conformation. The distances between K1 and oxygen atoms of 5(01-08)is in the range of 2.819(2)-2.888(2) Å. The atoms K1, Fe1 and Fe2 are arranged almost linearly, and K1 is located at the midpoint of Fe1 and Fe2 (distances: Fe1…K1, 4.122(1) Å, Fe2…K1, 4.114(1) Å; angle: Fe1...K1...Fe2, 174°). The dihedral angle of the cyclopentadienyl ligands between two ferrocenylene units is 57° (average). Fig. 2(E) shows the molecular structure of cationic part of [Na(6)]BARF. Na atom was incorporated in the cavity of 6. The distance between Na1 and oxygens of 6 (O1-O6) is in the range of 2.419(2)-2.654(2) Å. The nitrogen atom of 6 coordinates to the Na atom (distance: Na1–N1, 3.914(1) Å; angle: Na1–N1…Centroid of C₅H₃N, 177°). Fe1 is separated from Na1 (distance: Fe1…Na1, 3.914 (1) Å), indicating little interaction between them. The dihedral angle of C5-O1 and C21-O6 bond is 50°.

In all the macrocyclic ferrocenophanes, cyclopentadienyl ligands of the ferrocenylene unit are in the eclipsed conformation (tilt angle: $0.9-14.5^{\circ}$) and the bond angles of C(C₅H₄)–O bonds were in the range of $16^{\circ}-72^{\circ}$. The cyclopentadienyl ligands were almost parallel in **2**, **3**, **4**, [K(**5**)]BPh₄ and [Na(**6**)]BARF. The circumferential bond lengths were varied from 28.42(5) Å to 39.7 (1) Å depending on the ethylene glycol, the 1,1'-ferrocenylene, and the pyrido units[11,12]. Replacement of a C₆H₄-1,2- in the benzo-crown ether by a 1,1'-ferrocenylene unit causes the enlargement of the circumferential bond lengths by ca. 2.7 Å.

Ferrocene-containing crown ethers, **1–6**, undergo electrochemical oxidation and reduction at $E_{1/2} = -0.19$ to -0.21 V (vs. Fc⁺/Fc, Fc = ferrocene). The redox potentials of the compounds determined by cyclic voltammetry (CV) are summarized in Table 3. The lower redox potentials of ferrocene-containing crown ethers were ascribed to the electron donation from the alkoxy groups to stabilize the Fe(III)⁺. Fig. 3 depicts cyclic voltammograms of **1** and **3** in MeCN. Both the compounds show one pair of peaks assigned to the redox of ferrocenylene units. The larger peaks of **3** than those of **1** indicate the oxidation and reduction of the two ferrocenylene units of **3** at the same potential and no interaction between the Fe centers. Similar redox peaks were observed also in the cyclic voltammogram of **5** ($E_{1/2} = -0.20$ V).

Formation of pseudorotaxane of **6** with di(alkyl)ammonium, [NH₂{(CH₂)₉Me}₂]BARF, was investigated by FABMS and ¹H NMR spectroscopy (Scheme 1). FABMS of the product obtained from the equimolar mixture of **6** and [NH₂{(CH₂)₉Me}₂]BARF in CDCl₃

Та	bl	e	2

Selected	distances,	bond a	angles	of macroc	vclic fer	rocenop	hanes a	nd cr	own ethers.	
			<u> </u>							

Compound	Angle of $C(C_5H_4)$ –O bonds	Dihedral angle of C ₅ H ₄ planes/ ^{°a})	Circumferential bond length/Å	Conformation of C ₅ H ₄ planes (Tilt angle ^b)
1	16°	6.1(1)	28.42(5)	eclipsed (8.7°)
2	62°	-1.60(8)	29.72(4)	eclipsed (0.9°)
3	72°	-2.55(7)	31.1(4)	eclipsed (1.2°)
	72°	-3.63(7)		
4	50°	3.92(9)	37.02(8)	eclipsed (14.5°)
5	57°	1.1(2)	39.7(1)	eclipsed (8.4°, 9.3°)
	58°	2.1(1)		
6	50°	1.6(1)	32.47(8)	eclipsed (6.0°)
DB18C6 ^c	-	-	25.8(2)	-
DB24C8 ^d	_	-	34.16(6)	-

^a The deviations from the ideal parallel conformation.

^b The deviations from the ideal eclipsed conformation.

^c Ref. [11].

^d Ref. [12].

Table 3

Redox potential of macrocyclic ferrocenophanes.^a

Compound	$E_{\rm pa}/{\rm V}$	$E_{\rm pc}/{\rm V}$	$E_{1/2} (\Delta E^{\rm b})/{\rm V}$
1	-0.17	-0.24	-0.21 (0.07)
2	-0.18	-0.25	-0.21 (0.07)
3	-0.13	-0.25	-0.19 (0.12)
4 ^c	-0.18	-0.24	-0.21 (0.06)
5	-0.16	-0.23	-0.20(0.07)
6	-0.15	-0.28	-0.21 (0.13)

^a Electrochemical potentials are obtained by cyclic voltammetry (CV) in MeCN containing ${}^{n}Bu_{4}NPF_{6}$ as the electrolyte. Potentials are referenced with Fc⁺/Fc (Fc = Fe(C₅H₅)₂). Sweep rate: 0.10 V s⁻¹.

^b $\Delta E = E_{\rm pa} - E_{\rm pc}$.

^c Ref. [9].

contains a peak at m/z = 796 which is corresponding to the cationic pseudorotaxane, $[(\mathbf{6}){NH_2((CH_2)_9Me)_2}]^+$. Addition of $\mathbf{6}$ to a CDCl₃ solution of $[NH_2\{(CH_2)_9Me)_2]BARF$ ($[\mathbf{6}] = [[NH_2\{(CH_2)_9Me)_2]BARF] = 10$ mM) causes shift of the ¹H NMR signals of NCH₂ (δ 2.94) and NH₂ (δ 5.88) hydrogens to the lower magnetic field positions (δ 3.38 (NCH₂), 7.92 (NH₂)) (Fig. 4(A) and (B)). Cooling the solution to -50 °C causes further shift of the NH₂ hydrogen peak to δ 8.42. The molar ratio of $[(\mathbf{6}){NH_2((CH_2)_9Me)_2}]BARF$ to $[NH_2\{(CH_2)_9Me)_2\}$ BARF at -50 °C was estimated to 87/13, based on the signal of the NCH₂ hydrogens. The shifts of the signals of $[(\mathbf{6}){NH_2((CH_2)_9Me)_2}]BARF$ from those of $[NH_2\{(CH_2)_9Me)_2]BARF$ were ascribed to

Fig. 3. Cyclic voltammograms in MeCN containing 0.10 M nBu_4NPF_6 at 25 °C. Sweep rate: 0.10 V s⁻¹. (A) 1 (1.0 mM) and (B) 3 (1.0 mM).

[(6){NH₂((CH₂)₉Me)₂}]BARF

Scheme 1. Formation of pseudorotaxane of 6 and [NH₂{(CH₂)9Me}₂]BARF.

the hydrogen bonds between NCH₂ and NH₂ hydrogen of $[NH_2{(CH_2)_9Me}_2]BARF$ and the oxygens and nitrogen of **6**[14].

The mixture of **6** and $[NH_2\{(CH_2)_9Me\}_2]BARF$ shows the signals of the hydrogen at C₆H₃N-CH₂ and 3-position of C₆H₃N of **6** (δ 4.55, 7.19) and the sharp cyclopentadienyl hydrogen signals (δ 3.80, 3.90) (Fig. 4(C)), while free **6** shows the former signals at lower positions (δ 4.72, 7.34) and as broad signals due to the cyclopentadienyl hydrogens (δ 4.03, 4.24). The difference in the ¹H NMR signals between the complexed and uncomplexed macrocycle is ascribed to the restricted ring motion in ferrocene unit in pseudorotaxane [(**6**){NH₂((CH₂)₉Me)₂]BARF. The association constant K_a (5.1 × 10³ M⁻¹ at 25 °C) is obtained from the ¹H NMR and found to be larger than that of the complex of P21C7 (pyrido[21]crown-7) and

Fig. 4. ¹H NMR spectra (300 MHz, CDCl₃, 25 $^{\circ}$ C) of (A) [NH₂{(CH₂)₉Me}₂]BARF, (B) **6** and [NH₂{(CH₂)₉Me}₂]BARF (10 mM for each), and (C) **6**. Peaks with asterisk indicate CHCl₃.

 $[NH_2(nBu)_2]PF_6$ in acetone- d_6 ($K_a = 1625 M^{-1}$ at 22 °C)[13]. Stoddart et al. investigated complexation of DB24C8 and di(n-alkyl) ammonium with PF_6 anion in CDCl₃ and concluded that low solubility of the dialkylammonium in the less polar solvent prevented determination of precise association constant[15]. Since di (alkyl)ammonium with BARF counter anion used in this study is soluble in CDCl₃ and forms an equilibrated mixture with the [2] pseudorotaxane, the ¹H NMR data gives the reliable association constants in CDCl₃. Similar pseudorotaxane formation of $[NH_2{(CH_2)_9Me}_2]BARF$ with **1–3** and **5** was not observed in both in ¹H NMR spectroscopy and in FABMS measurement.

In summary, we report the synthesis of macrocyclic ferrocenophanes which were analyzed by X-ray crystallography. The crown ethers with various ring sizes were obtained depending on the numbers of ethylene glycol units as well as the 1,1'-ferrocenylene, C_6H_4 and pyrido units. The obtained ferrocene-containing crown ethers exhibit reversible oxidation and reduction of the Fe(II) center at lower potentials than that of unsubstituted ferrocene. The macrocyclic ferrocenophanes having a pyrido group showed function as a host molecule for the dialkylammonium to form a pseudorotaxane type complex in solution.

3. Experimental

3.1. General

 $Fe{C_5H_4OCH_2(CH_2OCH_2)_2CH_2OT_3_2[9]},$ $Fe(C_5H_4OAc)_2[6c, 16],$ $C_5H_3N-2,6-(CH_2OTs)_2[17]$, NaBARF[18], (BARF = B{C_6H_3-3,5- $(CF_3)_{2}_{4}$ and **4**[9] were prepared according to the literature method. The other chemicals were commercially available. DMF and water used as solvent for preparation of Fe(C₅H₄OCH₂-CH₂OCH₂CH₂OH)₂, **1**, **2**, **3** and **5** were degassed by N₂ gas bubbling (1 h) before use. NMR spectra $({}^{1}H, {}^{13}C{}^{1}H)$ were recorded on a Varian MERCURY300. The chemical shifts were referenced with respect to CHCl₃ (δ 7.26) for ¹H and CDCl₃ (δ 77.0) for ¹³C as internal standards. Fast atom bombardment mass spectrum (FABMS) was obtained from JEOL JMS-700 (matrix, 2-nitrophenyloctylether). Elemental analyses were carried out with a Yanaco MT-5 CHN autorecorder. Cyclic voltammetry (CV) was measured in MeCN solution containing 0.1 M ⁿBu₄NPF₆ with ALS Electrochemical Analyzer Model-600A. The measurement was carried out in a standard one-compartment cell equipped with Ag⁺/Ag reference electrode, a platinum-wire counter electrode and a platinum-disk working electrode (ID: 1.6 mm). Thermogravity analysis (TGA) was recorded on Seiko TG/DTA6200R. Differential scanning calorimeter (DSC) was recorded on Seiko DSC6200S. IR absorption spectra were recorded on Shimadzu FT/IR-8100 spectrometers.

3.2. Fe(C₅H₄OCH₂CH₂OCH₂CH₂OH)₂

The aqueous solution (40 mL) containing Fe(C₅H₄OAc)₂ (0.73 g, 2.4 mmol), [18]crown-6 (0.021 g, 0.079 mmol) and KOH (6.9 g, 120 mmol) was refluxed for 20 min under nitrogen atmosphere. Cl (CH₂CH₂O)₂THP (THP = 2-tetrahydropyranyl) (2.0 g, 9.6 mmol) was added to the solution followed by further refluxing for 7 h. The product was extracted by Et₂O and the separated organic phase was washed with NaHCO₃(aq) and water then dried over MgSO₄, filtered and evaporated to give yellow oil. The crude product was purified by SiO₂ column chromatography (AcOEt, R_f = 0.08) to give Fe(C₅H₄OCH₂CH₂OCH₂CH₂OH)₂ as yellow oil (0.24 g, 0.61 mmol, 25%). Anal. Calcd. for C₁₈H₂₆FeO₆(H₂O)_{0.75}: C, 53.02; H, 6.80. Found: C, 53.14; H, 6.58; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 2.99 (m, 2H, OH), 3.64–3.67 (m, 4H, CH₂), 3.73–3.79 (m, 8H, CH₂), 3.88 (brs, 4H, C₅H₄), 3.99–4.02 (brs, 4H, C₅H₄); ¹³C{¹H} NMR (75.5 MHz, CDCl₃,

r.t.): δ 55.9 (C₅H₄), 61.4 (CH₂), 62.3 (C₅H₄), 69.6 (CH₂, 2 signals), 72.6 (CH₂), 126.5 (C₅H₄).

3.3. $Fe(C_5H_4OCH_2CH_2OCH_2CH_2OTs)_2$

NaOH (0.15 g, 3.3 mmol) and TsCl (0.26 g, 1.3 mmol) was added to a solution (THF/H₂O = 0.6 mL/0.1 mL) of Fe(C₅H₄OCH₂-CH₂OCH₂CH₂OH)₂ (0.17 g, 0.43 mmol) at room temperature. The solution was stirred for 21 h at room temperature followed by addition of water and the extraction of the product with CH₂Cl₂. The separated organic phase was dried over MgSO₄, filtered, and evaporated to give Fe(C₅H₄OCH₂CH₂OCH₂CH₂OTs)₂ as orange oil (0.30 g, 0.42 mmol, 98%). Anal. Calcd. for C₃₂H₃₈FeO₁₀S₂(H₂O): C, 53.33; H, 5.59. Found: C, 53.25; H, 5.56; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 2.42 (s, 6H, CH₃), 3.68–3.75 (m, 8H, CH₂), 3.83–3.85 (m, 4H, C₅H₄), 3.89–3.92 (m, 4H, CH₂), 4.07–4.08 (m, 4H, C₅H₄), 4.16–4.19 (m, 4H, CH₂), 7.32 (d, 4H, C₆H₄, *J* = 8 Hz), 7.79 (d, 4H, C₆H₄, *J* = 8 Hz); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r.t.): δ 21.5 (CH₃), 55.8 (C₅H₄), 62.3 (C₅H₄), 68.6 (CH₂), 69.1 (CH₂), 69.5 (CH₂), 69.8 (CH₂), 126.4 (C₅H₄), 127.8 (C₆H₄), 129.7 (C₆H₄), 132.5 (C₆H₄), 144.7 (C₆H₄).

3.4. Ferrocenophane 1

A DMF solution (20 mL) containing Fe(C₅H₄OCH₂CH₂OCH₂-CH₂OTs)₂ (0.23 g, 0.33 mmol) and ortho-catechol (36 mg, 0.33 mmol) was added dropwise to the DMF suspension (20 mL) of K₂CO₃ (0.46 g, 3.3 mmol) at 80 °C. The resulting solution was stirred for 7 days at 80 °C followed by evaporation. The obtained brown oil was dissolved in CH₂Cl₂ and the solution was washed with saturated NH₄Cl(aq). The separated organic phase was dried over MgSO₄, filtered and evaporated to form yellow oil. The crude product was purified by SiO₂ column chromatography (CH₂Cl₂, $R_{\rm f} = 0.09$) to give **1** as yellow solid (90 mg, 0.19 mmol, 58%). Anal. Calcd. for C₂₄H₂₈FeO₆: C, 61.55; H, 6.03. Found: C, 61.43; H, 5.68; FABMS: Calcd. for $C_{24}H_{28}FeO_6$: 468. Found: m/z = 468; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 3.81–3.83 (m, 4H, C₅H₄), 3.96–3.99 (m, 8H, CH₂), 4.03–4.06 (m, 4H, CH₂), 4.12–4.13 (m, 4H, C₅H₄), 4.19–4.22 (m, 4H, CH₂), 6.87–6.94 (m, 4H, C₆H₄); $^{13}C{^{1}H}$ NMR (75.5 MHz, CDCl₃, r.t.): δ 56.1 (C₅H₄), 61.8 (C₅H₄), 69.3 (CH₂), 69.8 (CH₂), 70.0 (CH₂), 70.6 (CH₂), 113.5 (C₆H₄), 121.3 (C₆H₄), 126.7 (C₅H₄), 148.6 (C₆H₄); IR (KBr disk, r.t., in cm⁻¹): 2938, 2679, 1356, 1279, 1125; 5% weight loss temperature: 262 °C (by TGA. scan rate = 5 °C/min); m.p.: 132 °C (by DSC. decomp.). Similar reaction using Cs₂CO₃ instead of K₂CO₃ gave 1 in 43% yield.

3.5. Ferrocenophane 2

A DMF solution (50 mL) containing Fe(C₅H₄OCH₂CH₂OCH₂-CH₂OTs)₂ (0.27 g, 0.39 mmol) and meta-resorcinol (1,3-dihydroxybenzene) (46 mg, 0.39 mmol) was added dropwise to the DMF suspension (25 mL) of K₂CO₃ (0.54 g, 3.9 mmol) for 6 h at 80 °C. The resulting solution was stirred for 3 days at 80 °C followed by evaporation. The obtained brown oil was dissolved in CH₂Cl₂ and the solution was washed with saturated NH₄Cl(aq). The separated organic phase was dried over MgSO₄, filtered and evaporated to form yellow oil. The crude product was purified by SiO₂ column chromatography (CH₂Cl₂, $R_f = 0.36$) to give **2** as yellow solid (37 mg, 0.079 mmol, 20%). Anal. Calcd. for C24H28FeO6: C, 61.55; H, 6.03 Found: C, 61.45; H, 5.90; FABMS: Calcd. for C₂₄H₂₈FeO₆: 468. Found: m/z = 468; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 3.79 (t, 4H, CH₂, *J* = 4 Hz), 3.85 (m, 8H, CH₂, C₅H₄), 3.97 (t, 4H, CH₂, *J* = 4 Hz), 4.12 (brs, 4H, C₅H₄), 4.24 (t, 4H, CH₂, *J* = 5 Hz), 6.53 (dd, 2, C₆H₄, *J* = 8, 2 Hz), 6.89 (t, 1H, C₆H₄, J = 2 Hz), 7.14 (t, 1H, C₆H₄, J = 8 Hz); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r.t.): δ 56.3 (C₅H₄), 62.3 (C₅H₄), 68.2 (CH₂), 69.9 (CH₂), 70.0 (CH₂), 70.2 (CH₂), 103.2 (C₆H₄), 108.3 (C₆H₄), 129.7 $(C_6H_4), 160.0 \, (C_6H_4).$ Similar reaction using Cs_2CO_3 instead of K_2CO_3 gave ${\bf 2}$ in 13% yield.

3.6. Ferrocenophane 3

The water suspension (8 mL) of Cs₂CO₃ (0.75 g, 2.3 mmol), KOH (0.10 g, 0.19 mmol), and Fe(C₅H₄OAc)₂ (70 mg, 0.23 mmol) was refluxed for 20 min under Ar atmosphere. A DMF solution (27 mL) containing Fe(C₅H₄OCH₂CH₂OCH₂CH₂OTs)₂ (0.16 g, 0.23 mmol) was added dropwise to the solution at 80 °C. The resulting solution was stirred for 7 h at 80 °C followed by evaporation. The obtained brown oil was dissolved in CH₂Cl₂ and the solution was washed with saturated NH₄Cl(aq). The separated organic phase was dried over MgSO₄, filtered and evaporated to form yellow oil. The crude product was purified by SiO₂ column chromatography (CH₂Cl₂, $R_f = 0.35$) to give **3** as yellow oil (10 mg, 0.017 mmol, 8%). Anal. Calcd. for C₂₈H₃₂Fe₂O₆(H₂O)_{0.25}: C, 57.91; H, 5.64. Found: C, 57.87; H, 5.30; FABMS: Calcd. for C₂₈H₃₂Fe₂O₆: 576. Found: m/z = 576; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 3.86-3.89 (m, 16H, C₅H₄, CH₂), 4.06 (m, 8H, CH₂), 4.11 (m, 8H, C₅H₄); ${}^{13}C{}^{1}H$ NMR (75.5 MHz, CDCl₃, r.t.): δ 56.2 (C₅H₄), 62.1 (C₅H₄), 70.1 (CH₂, 2 signals), 127.0 (C₅H₄).

3.7. Ferrocenophane 5

The water suspension (10 mL) of Cs₂CO₃ (1.2 g, 3.6 mmol), KOH (0.19 g, 3.0 mmol) and Fe(C₅H₄OAc)₂ (0.12 g, 0.36 mmol) was refluxed for 20 min under Ar atmosphere. A DMF solution (60 mL) containing Fe{C₅H₄OCH₂(CH₂OCH₂)₂CH₂OTs}₂ (0.28 g, 0.36 mmol) was added dropwise to the solution at 80 °C. The resulting solution was stirred for 19 h at 80 °C followed by evaporation. The obtained brown oil was dissolved in CH₂Cl₂ and the solution was washed with saturated NH₄Cl(aq). The separated organic phase was dried over MgSO₄, filtered and evaporated to form 5 as yellow oil (80 mg, 0.12 mmol, 33%). The isolation of 5 was not feasible due to decomposition during the further purification by SiO₂ column chromatography and the preparative HPLC (eluent: CHCl₃). FABMS: Calcd. for C₃₂H₄₀Fe₂O₈: 664. Found: m/z = 664; ¹H NMR (300 MHz, CDCl₃, r.t.): δ 3.58–3.88 (m, 24H, CH₂), 3.83–3.88 (m, 8H, C₅H₄), 3.92-4.04 (m, 8H, CH₂), 4.09-4.18 (m, 8H, C₅H₄). Low stability of 5 in CDCl₃ prevents ¹³C{¹H} NMR measurement.

Table 4

Crystal data and details of structure refinement of 1, 2, 3, [K(5)]BPh₄ and [Na(6)]BARF.

3.8. Ferrocenophane 6

A THF solution (14 mL) containing Fe(C₅H₄OCH₂CH₂OCH₂-CH₂OH)₂ (107 mg, 0.27 mmol) and C₅H₃N-2,6-(CH₂OTs)₂ (120 mg, 0.27 mmol) was added dropwise for 24 h to the THF solution (43 mL) of NaH (19 mg, 0.81 mmol) under reflux. The solution was refluxed further 2 days followed by quenching with methanol/water and evaporation. The product was dissolved in AcOEt and the solution was washed with saturated NaCl(aq). The separated organic phase was dried over MgSO₄, filtered and evaporated to form yellow oil which was purified by SiO₂ column chromatography (AcOEt, $R_{\rm f} = 0.19$) and preparative HPLC (eluent: CHCl₃) to give **6** as yellow solid (23 mg, 0.048 mmol, 18%). FABMS: Calcd. for C₂₅H₃₁FeNO₆: 497. Found: m/z = 497; ¹H NMR (400 MHz, CDCl₃, r.t.): 3.64 (brs, 4H, OCH₂), 3.70 (m, 4H, OCH₂), 3.77 (m, 4H, OCH₂), 3.85 (brs, 4H, OCH₂), 4.03 (brs, 4H, C₅H₄), 4.24 (brs, 4H, C₅H₄), 4.72 (s, 4H, CH₂C₅H₃N), 7.34 $(d, 2H, C_3H_5N-H3, J = 8 Hz), 7.69 (t, 1H, C_3H_5N-H4, J = 8 Hz); {}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃, r.t.): δ 56.0 (C₅H₄), 62.9 (C₅H₄), 69.8 (OCH₂), 69.8 (OCH₂), 70.0 (OCH₂), 71.0 (OCH₂), 74.3 (CH₂C₅H₃N), 121.2 (C₃H₅N-C3), 128.8 (C₅H₄), 137.1 (C₃H₅N-C4), 157.8 (C₃H₅N-C2); Anal. Calcd. for C₅₇H₄₃BF₂₄FeNNaO₆ ([Na(6)]BARF): C, 49.48; H, 3.13; N, 1.01. Found: C, 49.10; H, 2.77; N, 1.00; IR data for [Na(6)]BARF (KBr disk, r.t., in cm⁻¹): 2915, 1354, 1279, 1100-1170; 5% weight loss temperature: 327 °C (by TGA. scan rate = 5 °C/min).

3.9. [NH₂{(CH₂)₉Me}₂]BARF

[NH₂{(CH₂)₉Me}₂]BARF was prepared by similar method to the literature [19]. Data of [NH₂{(CH₂)₉Me}₂]BARF: ¹H NMR (300 MHz, CDCl₃, r.t.): δ 0.87 (t, 6H, CH₃, *J* = 7 Hz), 1.16–1.36 (brs, 28H, CH₂), 1.51–1.62 (brs, 4H, NCH₂CH₂), 2.94 (m, 4H, NCH₂), 5.88 (brs, 2H, NH₂), 7.56 (s, 4H, *p*-C₆H₃(CF₃)₂), 7.70 (s, 8H, *o*-C₆H₃(CF₃)₂); ¹³C{¹H} NMR (75.5 MHz, CDCl₃, r.t.): δ 13.9 (CH₃), 22.6 (CH₂), 25.9 (CH₂), 26.3 (CH₂), 28.6 (CH₂), 29.0 (CH₂), 29.1 (CH₂), 29.2 (CH₂), 31.7 (CH₂), 49.7 (NCH₂), 117.6 (*p*-C₆H₃), 124.6 (q, CF₃, *J*(FC) = 273 Hz), 128.9 (q, CCF₃, *J*(FC) = 32 Hz), 134.8 (*o*-C₆H₃), 161.7 (q, BC, *J*(BC) = 50 Hz); IR (neat, r.t., in cm⁻¹): 2934, 2860, 1356, 1279, 1129.

3.10. X-ray structure analyses

Crystals of **1**, **2** and **3** suitable for X-ray diffraction study were obtained by recrystallization from acetone, CH_2Cl_2 /hexane, and

5					
Compound	1	2	3	$[K(5)]BPh_4$	[Na(6)]BARF
recrystallization solvent	acetone	CH ₂ Cl ₂ /hexane	AcOEt	MeOH/acetone	AcOEt
color of crystal	orange	orange	orange	orange	orange
formula	$C_{24}H_{28}FeO_6$	$C_{24}H_{28}FeO_6$	C ₂₈ H ₃₂ Fe ₂ O ₆	C ₅₆ H ₆₀ Fe ₂ KO ₈	C ₅₇ H ₄₃ NO ₆ BF ₂₄ FeNa
molecular weight	468.33	468.33	576.25	1022.69	1383.58
crystal system	monoclinic	monoclinic	monoclinic	triclinic	triclinic
space group	<i>P</i> 2 ₁ /n (No. 14)	<i>P</i> 2 ₁ /n (No. 14)	<i>P</i> 2 ₁ /n (No. 14)	<i>P</i> 1 (No. 2)	<i>P</i> 1 (No. 2)
a/Å	9.154(2)	13.994(2)	13.3096(7)	10.435(2)	12.527(3)
b/Å	13.057(3)	9.3331(15)	11.5137(6)	14.310(3)	12.978(3)
c/Å	17.934(4)	16.386(3)	16.1874(12)	16.747(4)	18.950(5)
α/deg	_	_	_	80.722(6)	98.513(4)
β/deg	102.716(4)	95.019(2)	92.094(4)	86.568(8)	105.126(3)
γ/deg	_	-	-	85.891(7)	94.139(3)
V/Å ³	2090.9(8)	2131.9(6)	2478.9(3)	2458.7(10)	2921(1)
Ζ	4	4	4	2	2
F(000)	984.00	984.00	1200.00	1072.00	1383.58
$D \cdot c/g \text{ cm}^{-1}$	1.488	1.459	1.544	1.381	1.573
crystal size/mm	$0.70\times0.30\times0.15$	$0.20\times0.15\times0.10$	$0.40 \times 0.40 \times 0.20$	$0.80\times0.60\times0.15$	$0.50\times0.40\times0.20$
unique reflections	4659	4833	5389	10390	12307
used reflections $[I \ge 2.0\sigma (I)]$	3448	3846	4850	8801	10566
No. of variables	308	308	357	673	863
R	0.032	0.029	0.027	0.052	0.050
R _w	0.036	0.036	0.040	0.064	0.080
good of fitness	1.01	1.02	0.96	1.04	0.90

AcOEt, respectively. The crystal of [K(5)]BPh₄ and [Na(6)]BARF was obtained by recrystallization from the solution containing 5 and KBPh₄ and from the solution containing **6** and NaBARF in 1:1 M ratio. All measurements were made on Rigaku AFC-10R Saturn CCD diffractometer with graphite monochromated Mo-Ka radiation. Calculations were carried out by using a program package Crystal Structure[™] for Windows [20]. Crystal data and detailed results of refinement are summarized in Table 4. All hydrogen atoms were included at the calculated positions with fixed thermal parameters.

Acknowledgments

We thank our colleagues in the Center for Advanced Materials Analysis, Technical Department, Tokyo Institute of Technology for elemental analysis and for FABMS measurement. This work was supported by a Grant-in-Aid for Scientific Research for Young Scientists from the Ministry of Education, Culture, Sports, Science and Technology, Japan (19750044), and by the Global COE program "Education and Research Center for Emergence of New Molecular Chemistry".

Appendix A. Supplementary material

CCDC nos. 787554, 787555, 787556, 787557, and 773746 contain the supplementary crystallographic data for 1, 2, 3, [K(5)]BPh₄ and [Na(6)]BARF, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

References

- A. Togni, T. Hayashi (Eds.), Ferrocenes, VCH, New York, 1995.
- (a) P. Nguyen, P. Gómez-Elipe, I. Manners, Chem. Rev. 99 (1999) 1515; (b) T.J. Colacot, Chem. Rev. 103 (2003) 3101.
- Recent example of the ferrocenophanes as the ligands for the transition metal complexes: (a) Y. Imamura, T. Mizuta, K. Miyoshi, Organometallics 25 (2006) 882; (b) N. Fleury-Brégeot, A. Panossian, A. Chiaroni, A. Marinetti, Eur. J. Inorg. Chem. (2007) 3853;

(c) A. Almássy, K. Barta, G. Franciò, R. Šebesta, W. Leitner, Š Toma, Tetrahedron: Asymmetry 18 (2007) 1893.

K. Osakada, T. Sakano, M. Horie, Y. Suzaki, Coord. Chem. Rev. 250 (2006) 1012. (a) I. Yamaguchi, T. Sakano, H. Ishii, K. Osakada, T. Yamamoto, J. Organomet. Chem. 584 (1999) 213;

(b) T. Sakano, H. Ishii, I. Yamaguchi, K. Osakada, T. Yamamoto, Inorg. Chim. Acta 296 (1999) 176;

(c) T. Sakano, M. Horie, K. Osakada, H. Nakao, Bull. Chem. Soc. Jpn. 74 (2001) 2059

(d) M. Horie, T. Sakano, K. Osakada, H. Nakao, Organometallics 23 (2004) 18; (e) T. Sakano, M. Horie, K. Osakada, H. Nakao, Eur. J. Inorg. Chem. (2005) 644; (f) Y. Suzaki, M. Horie, T. Sakano, K. Osakada, J. Organomet. Chem. 691 (2006) 3403

- [6] (a) J.F. Biernat, T. Wilczewski, Tetrahedron 36 (1980) 2521;
- (b) S. Akabori, H. Fukuda, Y. Habata, M. Sato, S. Ebine, Chem. Lett. (1982) 1393; (c) S. Akabori, Y. Habata, Y. Sakamoto, M. Sato, S. Ebine, Bull, Chem. Soc. Jpn, 56 (1983) 537
- (d) S. Akabori, Y. Habata, M. Sato, S. Ebine, Bull. Chem. Soc. Jpn. 56 (1983) 1459.
- (e) S. Akabori, Y. Habata, M. Sato, Bull. Chem. Soc. Jpn. 57 (1984) 68. [7] (a) T. Saji, Chem. Lett. (1986) 275;
- (b) T. Saji, I. Kinoshita, J. Chem. Soc., Chem. Commun. (1986) 716.
- 1,1'-Ferrocenylene-containing (pyrido)crown ethers having C₅H₄-COO bonds. [8] (a) T. Izumi, T. Tezuka, S. Yusa, A. Kasahara, Bull. Chem. Soc. Jpn. 57 (1984) 2435; (b) T. Izumi, S. Murakami, A. Kasahara, Bull. Chem. Soc. Jpn. 61 (1988) 3565.
- [9] Y. Suzaki, E. Chihara, A. Takagi, K. Osakada, Dalton Trans. (2009) 9881.
- [10] C.J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017.
- [11] G.M. de Lima, J.L. Wardell, W.T.A. Harrison, Acta Crystallogr. E64 (2008) 02001
- [12] I.R. Hanson, D.L. Hughes, M.R. Truter, J. Chem. Soc., Perkin Trans. 2 (1976) 972.
- [13] C. Zhang, K. Zhu, S. Li, J. Zhang, F. Wang, M. Liu, N. Li, F. Huang, Tetrahedron Lett. 49 (2008) 6917.
- [14] (a) G. Bottari, F. Dehez, D.A. Leigh, P.J. Nash, E.M. Pérez, J.K.Y. Wong, F. Zerbetto, Angew. Chem. Int. Ed. 42 (2003) 5886; (b) T. Chang, A.M. Heiss, S.J. Cantrill, M.C.T. Fyfe, A.R. Pease, S.J. Rowan, J.F. Stoddart, A.J.P. White, D.J. Williams, Org. Lett. 2 (2000) 2947; (c) A.R. Williams, B.H. Northrop, K.N. Houk, J.F. Stoddart, D.J. Williams, Chem. Eur. J. 10 (2004) 5406.
- [15] P.R. Ashton, P.J. Campbell, E.J.T. Chrystal, P.T. Glink, S. Menzer, D. Philp, N. Spencer, J.F. Stoddart, P.A. Tasker, D.J. Williams, Angew. Chem., Int. Ed. Engl. 34 (1995) 1865
- [16] A.N. Nesmejanow, W.A. Ssasonowa, V.N. Drosd, Chem. Ber. 93 (1960) 2717.
- D.L. Reger, R.F. Semeniuc, M.D. Smith, Cryst. Growth Des. 5 (2005) 1181. [17]
- M. Brookhart, B. Grant, A.F. Volpe, Jr., Organometallics 11 (1992) 3920. [18]
- [19] C.R. South, M.N. Higley, K.C.-F. Leung, D. Lanari, A. Nelson, R.H. Grubbs, J.F. Stoddart, M. Weck, Chem. Eur. J. 12 (2006) 3789.
- [20] Crystal Structure: Crystal Analysis Package. Rigaku and Rigaku/MSC, 2000-2010.